Memory is one of those cherished but mysterious elements in life. Everyone has memories, and some people are very good at rapid recall, which is an enviable skill for test takers. We know that we seem to lose the capacity to remember things as we age, and scientists continue to study how we remember some things but not others and what memory means, but we don’t know that much about memory, really.
Nelson Cowan is one researcher who is working to explain what we do know about memory. His article “What Are the Differences between Long-Term, Short-Term, and Working Memory?” breaks down the different types of memory and what happens when we recall thoughts and ideas. When we remember something, we actually do quite a lot of thinking.[1]
We go through three basic steps when we remember ideas or images: we encode, store, and retrieve that information. Encoding is how we first perceive information through our senses, such as when we smell a lovely flower or a putrid trash bin. Both make an impression on our minds through our sense of smell and probably our vision. Our brains encode, or label, this content in short-term memory in case we want to think about it again.
If the information is important and we have frequent exposure to it, the brain will store it for us in case we need to use it in the future in our aptly named long-term memory. Later, the brain will allow us to recall or retrieve that image, feeling, or information so we can do something with it. This is what we call remembering.
Figure 14.1
Working memory is a type of short-term memory, but we use it when we are actively performing a task. For example, nursing student Marilyn needs to use her knowledge of chemical reactions to suggest appropriate prescriptions in various medical case studies. She does not have to recall every single fact she learned in years of chemistry classes, but she does need to have a working memory of certain chemicals and how they work with others. To ensure she can make these connections, Marilyn will have to review and study the relevant chemical details for the types of drug interactions she will recommend in the case studies.
In working memory, you have access to whatever information you have stored in your memory that helps you complete the task you are performing. For instance, when you begin to study an assignment, you certainly need to read the directions, but you must also remember that in class your professor reduced the number of problem sets the written instructions indicated you needed to finish. This was an oral addition to the written assignment. The change to the instructions is what you bring up in working memory when you complete the assignment.
Short-term memory is a very handy thing. It helps us remember where we set our keys or where we left off on a project the day before. Think about all the aids we employ to help us with short-term memory: you may hang your keys in a particular place each evening so you know exactly where they are supposed to be. When you go grocery shopping, do you ever choose a product because you recall an advertising jingle? You see the box of cereal and you remember the song on the TV commercial. If that memory causes you to buy that product, the advertising worked. We help our memory along all the time, which is perfectly fine. In fact, we can modify these everyday examples of memory assistance for purposes of studying and test taking. The key is a deliberate use of strategies that are not so elaborate that they are too difficult to remember in our short-term memory.
Harvard psychology professor George A. Miller in 1956 claimed humans can recall about five to nine bits of information in our short-term memory at any given time. Other research has come after this claim, but this concept is a popular one.[2]
Considering the vast amount of knowledge available to us, five to nine bits isn’t very much to work with. To combat this limitation, we clump information together, making connections to help us stretch our capacity to remember. Many factors play into how much we can remember and how we do it, including the subject matter, how familiar we are with the ideas, and how interested we are in the topic, but we certainly cannot remember absolutely everything, for a test or any other task we face. As such, we have to use effective strategies, like those we cover later in this chapter, to get the most out of our memories.
Long-term memory is exactly what it sounds like. These are things you recall from the past, such as the smell of your elementary school cafeteria or how to pop a wheelie on a bicycle. Our brain keeps a vast array of information, images, and sensory experiences in long-term memory. Whatever it is we are trying to keep in our memories, whether a beautiful song or a list of chemistry vocabulary terms, must first come into our brains in short-term memory. If we want these fleeting ideas to transfer into long-term memory, we have to do some work, such as causing frequent exposure to the information over time (such as studying the terms every day for a period of time or the repetition you performed to memorize multiplication tables or spelling rules) and some relevant manipulation of the information.
We learn the lyrics of a favorite song by singing and/or playing the song over and over. That alone may not be enough to get that song into the coveted long-term memory area of our brain, but if we have an emotional connection to the song, such as a painful breakup or a life-changing event that occurred while we were listening to the song, this may help. Think of ways to make your study session memorable and create connections with the information you need to study. That way, you have a better chance of keeping your study material in your memory so you can access it whenever you need it.
If remembering things for exams or for learning new disciplines were easy, no one would have problems with it, but students face several significant obstacles to remembering, including a persistent lack of sleep and an unrealistic reliance on cramming. Life is busy and stressful, so you have to keep practicing strategies to help you study and remember successfully, but you also must be mindful of obstacles to remembering.
Sleep and college don’t always go well together. You have so much to do! All that reading, all those papers, all those extra hours in the science lab or tutoring center or library! And then we have the social and emotional aspects of going to school, which may not be the most critical aspect of your life as you pursue more education but are a significant part of who you are. When you consider everything you need to attend to in college, you probably won’t be surprised that sleep is often the first thing we give up as we search for more time to accomplish everything we’re trying to do. That seems reasonable—just wake up an hour earlier or stay up a little later. But you may want to reconsider picking away at your precious sleep time.
Sleep benefits all of your bodily functions, and your brain needs sleep time to dream and rest through the night. You probably can recall times when you had to do something without adequate sleep. We say things like “I just can’t wake up” and “I’m walking around half asleep.”
In fact, you may actually be doing just that. Lack of sleep impairs judgment, focus, and our overall mood. Do you know anyone who is always grumpy in the morning? A fascinating medical study from the University of California Los Angeles (UCLA) claims that sleep deprivation is as dangerous as being drunk, both in what it does to our bodies and in the harm we may cause to ourselves and others in driving and performing various daily tasks.[3][4]
If you can’t focus well because you didn’t get enough sleep, then you likely won’t be able to remember whatever it is you need to recall for any sort of studying or test-taking situation. Most exams in a college setting go beyond simple memorization, but you still have a lot to remember for exams. For example, when Saanvi sits down to take an exam on introductory biology, she needs to recall all the subject-specific vocabulary she read in the textbook’s opening chapters, the general connections she made between biological studies and other scientific fields, and any biology details introduced in the unit for which she is taking the exam.
Trying to make these mental connections on too little sleep will take a large mental toll because Saanvi has to concentrate even harder than she would with adequate sleep. She isn’t merely tired; her brain is not refreshed and primed to conduct difficult tasks. Although not an exact comparison, think about when you overtax a computer by opening too many programs simultaneously. Sometimes the programs are sluggish or slow to respond, making it difficult to work efficiently; sometimes the computer shuts down completely and you have to reboot the entire system. Your body is a bit like that on too little sleep.
On the flip side, though, your brain on adequate sleep is amazing, and sleep can actually assist you in making connections, remembering difficult concepts, and studying for exams. The exact reasons for this is still a serious research project for scientists, but the results all point to a solid connection between sleep and cognitive performance.
At least once in their college careers, most students will experience the well-known pastime called cramming. Consider the following scenario: Shelley has lots of classes, works part-time at a popular restaurant, and is just amazingly busy, so she puts off serious study sessions day after day. She isn’t worried because she has set aside time she would have spent sleeping to cram just before the exam. That’s the idea anyway. Originally, she planned to stay up a little late and study for four hours from 10 p.m. to 2 a.m. and still get several hours of refreshing sleep. But it’s Dolphin Week or Beat State Day or whatever else comes up, and her study session doesn’t start until midnight—she’ll pull an all-nighter. So, two hours after her original start time, she tries to cram all the lessons, problems, and information from the last two weeks of lessons into this one session. Shelley falls asleep around 3 a.m. with her notes and books still on her bed. After her late night, she doesn’t sleep well and goes into the morning exam tired.
Shelley does okay but not great on the exam, and she is not pleased with her results. More and more research is showing that the stress Shelley has put on her body doing this, combined with the way our brains work, makes cramming a seriously poor choice for learning.
Your brain simply refuses to cooperate with cramming—it sounds like a good idea, but it doesn’t work.
Cramming causes stress, which can lead to paralyzing test anxiety; it erroneously supposes you can remember and understand something fully after only minimal exposure; and it overloads your brain, which, however amazing it is, can only focus on one concept at a time and a limited number of concepts all together for learning and retention.
In the realm of learning and studying, some conditions warrant memorization as the most effective way to work with information. For instance, if you are expected to have a working knowledge of conversational French or Spanish, you will have to memorize some words. Simply knowing a long list of terms isn’t going to help you order food in a café or ask for directions in a foreign country because you also need to understand the other language’s grammar and have some sort of context for what needs to be said from your vocabulary list. But you cannot say the words in a different language if you cannot remember your vocabulary. From this scenario, you can assume that memorization is a good fit for some parts of language acquisition.
If you approach all your studying as memorization, you will find your course tests difficult at best. Most college courses will ask you to apply, analyze, evaluate, and create with the information you are learning, which is discussed earlier in the chapter. Merely being able to memorize so that you can recognize or recall information will not get you far in your college classes.
Footnotes
1. Cowan N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323–338. https://doi.org/10.1016/S0079-6123(07)00020-9
2. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
3. Nir, Y., Andrillon, T., Marmelshtein, A., Suthana, N., Cirelli, C., Tononi, G., & Fried, I. (2017). Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nature Medicine, 23(12), 1474–1480. https://doi.org/10.1038/nm.4433
4. Drowsy driving. (n.d.) UCLA Health Sleep Medicine. Retrieved July 18, 2025.
This content has been adapted from:
Chapter 8 (Dillon) is a derivative of: